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Fermi acceleration on the annular billiard
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We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard.
The model is considered under two different geometrical situations: static and breathing boundaries. We show
that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows
that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.
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I. INTRODUCTION

The phenomenon of Fermi acceleration was noticed for
the first time in 1949 [1] when Enrico Fermi attempted to
describe the mechanism in which cosmic charged particles
could be accelerated by stochastic time-dependent magnetic
clouds. This mechanism is basically associated with a clas-
sical particle subjected to a time-dependent perturbation in a
nonlinear context. After that many other different versions of
the original one-dimensional Fermi accelerator model were
proposed and studied. One of them, known as the Fermi-
Ulam model (FUM), consists of a particle moving between
two rigid walls, one fixed and the other periodically time
dependent [2]. The results obtained showed that the accelera-
tion was not observed. Ulam’s results were explained by
Zaslavsky and Chirikov [3], Lieberman and Lichtenberg [4],
and Brahic [5]. They showed that for smooth wall oscilla-
tion, the stochastic mechanism worked but the energy growth
was limited by invariant spanning curves present on the cor-
responding phase space. On the other hand, for the case
where the wall oscillation is not smooth enough, then those
barriers did not exist anymore. A very similar version of this
problem, also known as the bouncer model, consisting of a
particle bouncing vertically in a periodically oscillating wall,
was considered under the effect of a constant gravitational
field [6-8]. It was shown that depending on the combinations
of control parameters and initial conditions, the particle
might gain energy unlimitedly. The difference between the
two models (FUM and bouncer) was latter explained by Li-
chtenberg, Lieberman, and Cohen [9]. In the context of one-
dimensional time-dependent systems, many models concern-
ing Fermi acceleration have been made. It is worth
emphasizing three of them: the square well [10,11], the step
potential barrier [12], and a hybrid version of the FUM [13].
For these models, Fermi acceleration was observed only
when the perturbation was stochastic.

On the other hand, Loskutov, Ryabov, and Akinshin have
considered a Lorentz-type dispersing billiard whose bound-
ary oscillations were periodic and also stochastic in time
[14]. Their calculations showed that Fermi acceleration had
taken place in both situations. In the stochastic case they
have also identified two basic acceleration mechanisms. The
first one comes from the first moment which drives all par-
ticles to higher velocities, while the second one comes from
fluctuations and is controlled by two conditions: (i) the posi-
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tiveness of the second moment and (ii) a positive asymmetry
for the velocities. In that context, chaotic dynamics brought a
new approach for kinetic description of physical systems,
due to the fractal, multifractal, and stickiness structures of
the phase space. As a consequence, fractional kinetics and
anomalous transport may arise in chaotic systems [15-19].
Brief, historical comments on Fermi acceleration linking it
with fractional kinetics can be found in Ref. [20]. Recently
the same authors of Ref. [14], studying dynamical properties
of stadium billiards [21], under periodic time-dependent
boundaries, announced a conjecture (the LRA conjecture)
saying that a chaotic dynamics for a billiard with static
boundary is a sufficient condition for the Fermi acceleration
in the system when a boundary perturbation is introduced.
Later, Loskutov and Ryabov [22] continued their studies on
the stadiumlike billiards. The question posed initially by
Ulam naturally returns, the study of the Fermi mechanism in
systems with time-periodic perturbations. In that context we
revisit, in this paper, the problem of a particle bouncing elas-
tically in the annular billiard but now with the circles breath-
ing periodically.

Thus, our purpose is to investigate the effect of the time-
dependent boundaries on the dynamics, especially concern-
ing the LRA conjecture. The main reasons that we have cho-
sen the annular billiard as our model are: (i) it is very
familiar to us [23-25] and (ii) it has been used in many
different investigations including experimental works
[26-29]. In addition, we have studied a simplified version of
this model [30] as an attempt to verify the LRA conjecture.
The geometrical situation is such that it is possible to have
analytically both the concentric and the eccentric maps. The
dynamics runs in the free space in the ring between the two
circles and the particle suffers elastic collisions with both
boundaries. Initially, we consider the static case and we
present the area-preserving maps that describe the full dy-
namics. Next we introduce a periodically varying perturba-
tion for both boundaries. The discrete maps are obtained ana-
Iytically and they contain many parameters. In order to
investigate Fermi acceleration in the context of periodic os-
cillations, we vary only a few parameters in specific ranges.

The paper is organized as follows. In Sec. II we present
and discuss some representative numerical results for the
static case of the annular billiard. In Sec. III we deal with the
time-dependent boundaries and we obtain the expressions of
the maps. In Sec. IV we present and discuss the numerical
results. The conclusion and the final remarks are presented in
Sec. V.
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FIG. 1. A geometric scheme of a particle in the static annular
billiard.

II. THE STATIC BILLIARD

We describe in this section the dynamics of the annular
billiard with static boundaries. The system consists of a clas-
sical particle confined in an annular region limited by two
circumscribed circles, which we will then refer to as the
annulus. The geometry may either include the concentric or
eccentric configurations [23,31]. We define the radius of the
outer circle as R=1, the radius of the inner circle as r, and
the eccentricity as (d) (see Fig. 1 for a pictorial example of
the annular billiard). We use the constraint r+d <1, which
implies that the inner circle can never reach the external one.

Inside the annulus, a particle moves freely along a straight
line with constant kinetic energy until it collides elastically
with the boundaries. After suffering a collision the particle is
specularly reflected in the sense that the incidence angle is
equal to the reflection angle. The map describing the dynam-
ics is given by M(6,,a,)=(6,,,a,.1). It is easy to see in
Fig. 1 that we can determine the position of the particle on
the boundary by the specification of the two angles 6 and .
The range of « is [-7/2,7/2] while of 6 is 0 e[-m,].

There are also two kinds of motion which are distin-
guished by the so called tangency condition [23,31], namely,

sin(a,) — d sin(6, — a,)| < r. (1)

If the combination of both (6,, a,) are such that condition (1)
is not matched, then we have the dynamics described by map
M, and therefore we have a movement of type A.

Type A. Between two successive impacts with the external
boundary, the particle does not collide with the internal circle
and the map M, is

Apy1 = &
MA: " "
9n+1 =T+ 0,1—20[,1.

On the other hand, movements of type B are those obtained
when condition (1) is satisfied, i.e., see the following.

Type B. After suffering a collision with the external
boundary, the particle hits elastically with the internal circle
and then it reaches the external circle again.
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The map Mj is given by

{ a,., = arcsin(r sin 8 —d sin 6,)
Mp:

0n+1 -yt ZB+ 0/1_ Ay,

where

aa = 0n+1 + Q= 218+ en -y,

1
B= arcsin{ —[sin a,, — d sin(6, — an)]} .
r

If we set d=0 (concentric case), the phase space for both
r=0 and r#0 are filled by straight lines parallel to the 6
axis. The system is then integrable and such integrability
appears due to the angular momentum preservation with re-
spect to the origin of coordinate system O. The set of plots
presented in Fig. 2 shows the role of the eccentricity in the
increasing of the chaotic sea. We emphasize that for all the
figures, the corresponding Whispering Gallery Orbits
(WGO), referent to |sin(a)|=r+d=0.80, are not shown.
They consist of straight lines parallel to the @ axis.

The nonintegrability of the eccentric case is related to the
break of the angular momentum preservation and as conse-
quence, a very rich structure of periodic orbits and reso-
nances arises [32,33].

III. THE TIME-DEPENDENT BILLIARD

We discuss in this section the dynamics of a particle on
the annular billiard with time-varying boundaries. The time
perturbation is chosen in such way that both the internal and
the external boundaries oscillate simultaneously and preserve
their concavities. In this sense, the new radii are

R (") =1+ e cos(wpt’ + @),

r(t") =r+ € cos(wt' + ¢y),

where (€,,w,, ¢y) and (eg, wg, @) are the amplitude of oscil-
lation, the frequency of oscillation and the initial phases,
respectively, for both the internal and external boundaries.
Moreover, we can introduce dimensionless and more conve-
nient variables. We begin defining a new time = wgt’ so that
we have

R() =1+ egcos(t+ @),

r(t) =r+ €, cos(wt + ¢y), (2)

where w=w,/wg, R(t)=R"(t/wg), and r(t)=r"(t/ wg). Ac-
cording to the new set of control parameters, the expressions
for both velocities of the boundaries are

or) = B - sinte+ ). ()
d
v, (1) = ;(tl) =~ e sin(wr+ ). )

As the dynamics evolves, the particle can gain or loose
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FIG. 2. Phase space for the eccentric case. The control parameters used were (a) r=0.75, d=0.05, (b) r=0.55, d=0.25, (c) r=0.40,

d=0.40, and (d) r=0.15, d=0.65.

energy as it hits the boundaries. What call the collision zone
is the region in the billiard plane where the particle may
hit the boundaries. For the external boundary, the collision
zone is defined as (1—€z) <R<(l+e€g) and for the inter-
nal boundary it is (r—¢,)<R<(r+e€,) (see Fig. 3). The
dynamics is described using a nonlinear discrete map,
T( 9117 psUps s d)n) =(9n+l s X 15Un+1> Pt 1 s ¢n+l)’ which
gives all the relevant information for the dynamics between
the collision nth and (n+1)th with the external boundary.
The variables 6, and «,, are the angles previously used, v,, is

FIG. 3. A pictorial scheme for the annular billiard with time
varying boundaries.

the velocity, and (¢,,, ¢,) are, respectively, the phases of both
time-varying boundaries.

For the derivation of the map, we suppose that the particle
is initially located in the external collision zone whose rect-
angular Cartesian coordinates are given by

X, = R(@,)cos(6,), (5)

yn=R(¢g,)sin(6,), (6)

with R(¢,) given by Eq. (2) for the initial time t=¢,, where
the index n denotes the nth iteration. We use the conventions
©,=t,+@oymod 27, ¢,=wt,+¢d,mod2m. There are three
different physical situations for the dynamics between the
collisions. We begin considering the case for which the par-
ticle suffers successive collisions with the external boundary
without leaving the external collision zone.

Case 1. In this case, the particle experiences multiples
collisions with the external boundary before leaving the ex-
ternal collision zone. The dynamics is illustrated in Fig. 4.
The rectangular Cartesian components for the position of the
particle are

x,() = X, + Uyt

V(1) =y, + Uyt

where v,,,=v,, cos(6,) and v,,=v, sin(6,) are the correspond-
ing components of the velocity v,.. We define a radius for the
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FIG. 4. Tllustration of the successive collisions for case 1. The
particle begins in the point P, and hits the circle in P without
leaving the collision zone.

position of the particle as R,(f) =y ;(t)+ y,z,(t). Using Egs. (5)
and (6), we obtain

[
R[’(t) = \”Ri + 2(xnvnx + ynvny)t + Uitz’ (7)

where R,=\x>+y> and v,=\v> + viy. The mixed term in Eq.
(7) can be written in a more appropriate form. Note that it
represents the scalar product between (x,.,y,): (VU

=X, UnetYaU,y- Representing such a product in terms of polar
coordinates, we obtain (R,1,0)(v,), V) =R, 1
+eg cos(¢,)]v,,,, where v,,=-v, cos(a,) is the normal ve-
locity component while v,,,=v,, sin(a,) is the tangential one.
Incorporating these modifications, the expression for R, () is

given by

R,(1) = \/[1 + eg cos(@,) >+ 2v,,[ 1 + € cos(@,) ]t + vitz.

nn
As an attempt to obtain the instant of the impact of the par-

ticle with the external boundary, we match the condition
R,(1)=R(#). We thus define the function,

g(r)=[1+ eg cos(t + ¢,)]* = [1 + g cos(¢,) T’
= 20,,[1 + €g cos(e,) ]t — v
If g(r) admits roots in the interval 7 € (0,27], then we take
the smaller one denoting it as 7. If in the interval 0 <r=<t,
the condition

R,(1)=(1- &) (8)

is always true, then the time ¢,,,=t,+1, represents the instant
of the (n+1)th impact between the particle and the external
circle. If no solution for g()=0 is found, or if condition (8)
is not matched, then case 2 or 3 applies. Evaluating then the
variables for the instant 7,,;, we obtain

4 tn
0,1 = arctan[u] .
-xp(tn+l)

Immediately before the collision, the new components of the
velocity are
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FIG. 5. Illustration for case 2. The particle leaves A without
crossing B.

Unr] =Upx COS(G,H,]) + vny Sin(0n+l)s

Upr == Uy SIN(6,11) + 0,y €O8(6,41)

After the impact, only the radial component of the velocity is
modified, so that we obtain

Uin+l)n= —Uny + 2UR(tn+1)a

U(n+1)7= Unrs

where vg(z,,;) is given by Eq. (3). The respective expres-
sions for the new velocity, the new incidence angle, and cor-
responding phases are

[ 2
Upn+1= v(n+1)7]+v(n+l)7’

Un+l)r
a,, =arctan| — —— |,
Unt1)y

@il =@, + 1, mod 27,

bpi1 = b, + 0t, mod 277.

We now discuss case 2.

Case 2. In this case, the particle leaves the external colli-
sion area without, however, crossing the internal collision
area. After leaving the external collision area (see region A of
Fig. 5), the coordinates (a,, 6,) allow us to check the tan-
gency condition

IR, sin(a,) —d sin(6, — a,)| < (r + ¢,),

where R,=1+ € cos(¢,). If the tangency condition above is
not satisfied, then we proceed in case 2; otherwise case 3
applies. Between the impacts, the particle travels in a straight
line and we can obtain an analytic expression for the time
traveled after the nth impact until the particle enters the ex-
ternal collision area again. We have to obtain the intersection
of the particle’s radius R,(t) with the lower limit of the ex-
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ternal collision area (1 —€g). Such condition give rises to the
following equation:

vit2 +20,,[1 + €g cos(@,) ]t +[1 + e cos(g,)?
—(1-€)*=0. )

Equation (9) admits two real solutions. The smallest one cor-
responds to the instant that the particle crosses the radius
(1—-€g) and leaves the external collision area. We are inter-
ested in the second solution, which we will call t that gives
the instant when the particle crosses (1—e€g) toward the col-
lision area. Since the particle is again inside the external
collision area, it necessarily suffers an impact with the exter-
nal boundary. Moreover, this new impact does not character-
ize a successive collision since the particle has already trav-
eled outside of [(1—€g),(1+€g)]. We have now to obtain the
instant of the impact with the external boundary.

The new coordinates of the position of the particle at the
entrance of the external collision zone are

x,(t) = X, + Uyl (10)

yp(lif):yn"'vnytf’ (11)

where x, and y, are given by Eq. (5) and (6). The compo-
nents of the particle velocity, in polar coordinates, evaluated
in the time 7 are

Uy = Uy €0S(6)) +v,,,, sin(6y),

Upr == Uy Sin(6y) +v,,, cos(6y),
where
t
0= arctan[ M] .
' xp(tp)

As an attempt to obtain the instant of the impact we have to
match the condition

R,(1)=R(), (12)

where R(t) is given by Eq. (7) but therefore evaluation of 6,
and R(z) is given by Eq. (2). Equation (12) is also rewritten
as
(&) =[1+ egcos(t+1,+ @) > =1+ e cos(e,) ]
- v,zlt2 —2v,,[1+ € cos(g,)]r. (13)

The equation above admits more than one solution but we
are interested in the smallest. We will call by 7. the time
between the interval ¢ € [0,27). Since the instant of the im-
pact is obtained, the new time is f,,,=1,+1,+1, and the new
coordinates of the particle are

X1 = Xp(tp) + Ul (14)

yn+1=yp(tf)+vnytw (15)

We can now define the new angle,

PHYSICAL REVIEW E 73, 066229 (2006)

0,41 =arctan[)ﬂ], (16)
Xnt1

for which the new components of the velocity, immediately

before the collision, are

Unr] =Upnx C(:'S(‘9n+l) + Uny Sin(0n+l)’

Upr=— Uy sin(0n+1) + Uny COS(@,H_])

After the collision, only the radial component of the velocity
changes, then we have

v(n+1)7;=_vn7]+2UR(tc+tf+(Pn), (17)

Uin+1)r= Unsps (18)

where vy is given by Eq. (3).
The rectangular Cartesian coordinates for the new veloc-
ity are

Uine)x = UV(n+l) gy COS(011+1) —Um+)r Sin(6n+l) > (19)

Ve 1)y = Unat) SIN(Os1) + 0141y €08(0),41) - (20)

The modulus of v, is then v,,, ;= \/v(zn+1)x+ v(2n+1)y. The new

angle a,,, is obtained through

U(n+1
Ay = arctan|:—(wr )T] . (21)
v(n+1)77

Finally, the corresponding new phase for both the internal
and external boundaries is

Ppe1 =1+ tf+ Pn mOd(Z'ﬂ-)’ (22)

¢n+l = w(tc + t}‘) + d’n mOd(Zﬂ-) (23)

Let us now present and discuss case 3.

Case 3. For this case, after the particle leaves the external
collision area, it necessarily crosses the internal collision
zone. It might suffer an impact with the internal boundary or
not. For cases 1 and 2, our expressions for the maps describe
the dynamics of a particle suffering elastic collisions with
one boundary moving periodically in time [34]. Case 3 now
considers collisions with one more periodically varying
boundary, the internal one. After the collision and depending
on the phase of the internal boundary, the particle can gain or
loose energy. There are three different situations that we have
to consider for the case 3:

(i) The particle crosses the collision zone B without suf-
fering any collision with the internal boundary.

(ii) The particle collides once and leaves the internal col-
lision zone without suffering any further collision (see Fig.
6).

(iii) The particle suffers successive collisions with the in-
ternal boundary.

Let us now discuss case 1. After leaving the external
boundary with rectangular Cartesian coordinates (x,,y,) the
particle arrives in the internal collision zone (region B of Fig.
6) with coordinates
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FIG. 6. Illustration for case 3. The particle leaves A, collides
with the internal boundary in B, and finally hits the external bound-
ary in A.

x,=rcos(6,) —d,

yp=rsin(6,),
where the angle 6, is given by

.| R, sin(a,,) — d sin(6, — «,,)
6, = arcsin +6,-a,.
r+ e,

The time spent after the particle leaves the external collision
zone and arrives in the internal collision area is given by 7;
=AS/v,. Here,

AS = (= x> + (v — )7,

is the length of the trajectory starting from the point (x,,y,)
up to the entrance in the collision zone B at (x;,y,). The
particle necessarily suffers a collision with the internal
boundary if R,(f)=r(r). For this condition, we define the
function f,(¢) that is written as

f()=(r+e)+2(r+ €Ut + vit2
— (r+ ecos[w(t+1y) + o), (24)

where v},,=v,,, c0s(6,)+v,, sin(6,). The situation (1) applies
if £.(¢) does not have any root in the interval ¢ € (0,27/ w].
Then we proceed normally iterating as in the case 2. If, how-
ever, f,(f) has any root, for ¢ e (0,27/w] we have to deal
with situation (2). Calling the solution of Eq. (24) as ¢,, then
the coordinates of the particle, measured in the referential
frame of the internal boundary, are

! !
X, =X, + U,

! !
Yr=Yp + Unytr’

where x,=r cos(6,) and y,=r sin(6,). So we can now define
the angle 6,=arctan(y//x,) and the corresponding polar
coordinates for the velocity of the particle,

PHYSICAL REVIEW E 73, 066229 (2006)
Upy = Upy €08(6,) +v,,, sin(6,),

Upr=— Uy, sin(6,) +v,, cos(6,).

The new time is #,,=1,++1, and after the collision only
the radial component of the velocity changes. Then we have

Uinel)yp=— vn7]+ 2Ur(l‘m—l)»

U(n+1)7= Unrs

where the velocity v,(t,,,) is given by Eq. (4). After the
collision, the velocity of the particle has the components

Uin+1)x = U(n+l) COS(G,) “VUn+)r Sin(ar)’

Un+l)y = V(n+l)y Sin(er) + Un+l)r COS(@,) .

The condition for the particle suffering a successive col-
lision with the internal boundary is obtained using R,(7)
=r(t), and we can define a function g,(¢) as

g0 =[r+ € cos(wlt+1,]+ ¢,) 1
+ 20 1) L7 + € cos(@[t+1,]+ ¢)lt +v),, 1
—[r+ e cos(w[t+1,+1,]+ ¢,) .

If g,(¢) does not have any root for 7 € (0,27/ ], then it is
easy to conclude that the particle left the collision zone B
(see Fig. 6). If the particle leaves B, then we have to obtain
the time that it crosses the external collision area A, which
has the radius R=(1- €g). The instant of the crossing, we call
it f., corresponds to the largest solution of the following
equation:

[U(2n+1)x + v(2n+1)y:|t2 + Z(X;U(,H_l)x + y;v("'*'l)y)t
+(x;2+yr'2)—(1 - €)?=0. (25)

The next step is then to iterate normally Egs. (10), (11), and
(13), and then finally Egs. (14)—(23).

Suppose there exists a time 7, for which g,(¢,)=0 for ¢,
€ (0,27/ w]. This necessarily characterizes a successive col-
lision with the internal moving boundary and situation 3 ap-
plies. The new coordinates of the particle are

X;, = -xr’ + V(e 1)alss (26)

y; = y; + v(n+1)yts‘ (27)

Immediately before the impact, the components of the par-
ticle velocity are

vfl’)]: Un+1)x COS(Q\') + Un+1)y Sin(es)’ (28)

v/S17= ~Un+1)x Sin( as) + U(n+1)y COS(&S), (29)

with the angle #,=arctan(y;/x;). The upper index s denotes a
successive collision. After the collision, the new time is
lyp1 =1, +1p+1,+1; and the new components of the velocity are

s s
U(n+1)7]: - vn7]+ 2Ui’(l‘n+1)»
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FIG. 7. Phase space in variables v, X ¢ for the concentric case. The control parameters and initial conditions used were r=0.4, d=0, o=1
and (a) eg=¢€,=0.01, /=0.01, and ¢,—¢,=0; (b) eg=€,=0.01, [=0.01, and ¢,— ¢,=; (c) €x=0.1, €,=0.01, [=0.1, and ¢,— ¢,=0; and (d)

€z=0.01, €,=0.1, [=0.1, and ¢,—¢,=0.

s _ s
U(n+1)r_ Uprs

with v, given by Eq. (4). With these new values, we check
the condition g,(z)=0. If no root is found for 7 € (0,27/ w],
then the particle left the internal zone and it will certainly
arrive at the external collision zone. The procedures for this
case are the same as for case 2 for the particle entering into
the external collision zone. However, if a root is found, the
particle is suffering a further and successive collision. We
thus make x,—Xg, ¥:— Yo Vius1)p = Vlnst)p Unal = Vst 1
—t.+t,, and Egs. (26)—(29) are iterated again until the par-
ticle leaves the internal collision zone. From there we follow
the procedures of case 2 when the particle enters the collision
zone A.

r

IV. NUMERICAL RESULTS

We discuss in this section our results obtained for the
boundaries moving periodically in time. The concentric case
is firstly considered, and next the results for the eccentric
case are presented and discussed.

A. Concentric case

For the concentric case, the control parameter d assumes
the value d=0. To iterate the map we have to give the initial

conditions, (6,,v,,¢,, d,). We stress, however, that as a con-
sequence of the angular momentum preservation, the initial
condition ¢, is obtained from the equation

in(a) :
sSin = ,
o [l + €r COS((Pn)]Un

where we choose some ranges of values for the angular mo-
mentum /. For large /, the particle hits the internal boundary
only in the regime of high energy (large values of velocity).
So we set the range of [ as [ €[0,€g]. If /=0, our model
recovers all the results of the well-known Fermi-Ulam accel-
erator model [2,35].

We show in Fig. 7 the corresponding phase space on the
variables (-v,, ¢). We emphasize that such a system is near
integrable even considering both boundaries moving. In this
sense, it is easy to see a chaotic sea at low energy surround-
ing the Kolmogorov-Arnold-Moser (KAM) resonance is-
lands. The chaotic sea is also limited by a set of invariant
torus (also called invariant spanning curves). If the reader is
not familiarized with the nomenclature of dynamical sys-
tems, we suggest the textbooks [35,36]. The control param-
eters and the initial conditions used to construct Fig. 7 were
r=0.4, d=0, w=1, and: (a) €z=¢,=0.01, [=0.01, and ¢,
-¢,=0; (b) eg=¢,=0.01, [=0.01, and ¢,—¢,=m; (c) €
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FIG. 8. (Color online) Average velocity as function of the itera-
tion number. The control parameters used were r=0.5 and: (a) €
=¢,=0.1, =0.5, and (¢—$=0); (b) g=¢€,=0.01, =2, and ¢—¢

=0; and (c) €=0.001, €,=€x(V5+1)/2, and w=(\5+1)/2.

=0.1, €=0.01, [=0.1, and ¢,—¢,=0; and (d) €=0.01, €,
=0.1, [=0.1, and ¢,—¢,=0.

It is worth stressing that the invariant spanning curves
present in the phase space are responsible for the limited gain
of energy. The particle in the chaotic sea might gain or loose
energy, but no unlimited Fermi acceleration should be ob-
served. This is numerically verified and the results are shown
in Fig. 8. Figure 8 shows the average velocity as a function
of the iteration number (i.e., collisions with external bound-
ary). The average is made in an ensemble of 103 different

PHYSICAL REVIEW E 73, 066229 (2006)

initial phases, uniformly distributed in ¢ €[0,27]. For a
small number of iterations, the velocity grows until it reaches
a crossover iteration number and from there it bends toward
a regime of saturation. This saturation is a consequence of
the existence of invariant spanning curves and is conse-
quently none unlimited Fermi acceleration is observed. We
would like to emphasize that an analytical approach has been
made in the simplified version of the time-dependent annular
billiard (see Ref. [30]) in order to obtain the location of the
lowest energy invariant spanning curve.

Our results presented and discussed in this section give
support to the LRA conjecture [21] in the sense that the
dynamics for the concentric static case is entirely integrable.
As we shall show, the Fermi acceleration may occur only
when the dynamics for the static case is chaotic, as we dis-
Cuss NOw.

B. Eccentric case

Let us now discuss the eccentric case (d # 0). We consider
two different dynamical scenarios of the static case in order
to study the time-dependent billiard. We have fixed the con-
dition r+d=0.8 and we choose the configurations (a) r
=0.75 and d=0.05; and (b) r=0.15 and d=0.65. The reason
for choosing such combinations is because the dynamics for
the first case is mostly regular around the fixed point (6, «)
=(0,0) with a small region of instability. On the other hand,
the phase space of the second case is predominantly chaotic.
The behavior of (v) as function of n is shown in Fig. 9.

The averages were made in an ensemble of 500 different
initial conditions uniformly distributed in the range of ¢
€[0,27). We assume as fixed, for the rest of the paper, the
values (6, ay)=(0.2,0.2). The control parameters used were
w=1, eg=¢€,=0.01, and the initial velocity was vy=2€g and
in 9(a) and 9(c) r=0.75 and d=0.05; in 9(b) r=0.15 and d
=0.65. The average velocity grows since the beginning of the
simulation up to 107 iterations. For Fig. 9(a), the average
velocity presents a hump at around n=~ 10 iterations. After
that, the growth seems to be smooth and continuous. Figure
9(c) presents a zoom of Fig. 9(a) after n=10%. We can there-
fore suppose that the average velocity grows according to

(v) = n?, (30)

where & is the growth exponent. For Fig. 9(c) (r=0.75 and
d=0.05), we obtained an exponent 5=0.1115(8); on the
other hand, in Fig. 9(b) (r=0.15 and d=0.65), we got &
=0.393(3). We might therefore emphasize that all plots pre-
sented in Figs. 9(a)-9(c) show the Fermi acceleration.

For the previous results, the value considered for the ini-
tial velocity was vy=2€z. Now we show in Fig. 10 the be-
havior of (v) Xn for four different values of v, namely: v,
={2€g,10€g,100€,1000€;}. The control parameters used
were r=0.15, d=0.65 and (a) w=1, &=¢=0.01; (b) €
=0.01, ,=€x(V5+1)/2, and w=(\g+1)/2. For low values
of the initial velocity and after a very brief transient, the
velocity of the particle presents a continuous growth, given
by Eq. (30). However, as the initial energy increases, the
average velocity remains constant along of a plateau spend-
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FIG. 9. (Color online) Log-log plot of the average velocity as
function of the iteration number. The control parameters used were
er=¢€,=0.01, vy=2€, w=1, and (a) and (c) r=0.75 and d=0.05; (b)
r=0.15 and d=0.65.

ing many iterations in a transient until changeover and bends
towards a regime of growth. The transient depends sensi-
tively on the initial velocity but all of them follow a growth
envelope. For Fig. 10(a) the exponent is the same of that one
obtained for Fig. 9(b), i.e, 6=0.393(3). A power law fitting
for Fig. 10(b) gives 6=0.47(1). We emphasize that all the
initial conditions given for the eccentric case with time-
varying boundaries fell into the chaotic sea for the corre-
sponding static version of the model. These results also give
support to the LRA conjecture in the sense that the chaotic
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FIG. 10. (Color online) Log-log plot of the average velocity as
function of the iteration number for different initial velocities: v
=2€g,10€g,100€g,1000€;. The control parameters used were r
=0.15, d=0.65 and (a) €g=¢€,=0.01, w=1 and (b) &=0.01, €,
=ex(V5+1)/2, o=(5+1)/2.

dynamics for the static version of the annular billiard implies
in Fermi acceleration for the periodic time-dependent annu-
lar billiard.

V. FINAL REMARKS AND CONCLUSIONS

We have studied the annular billiard under two different
situations: (i) static boundaries and (ii) periodic time-
dependent boundaries. The dynamics of the system was de-
scribed using nonlinear maps. For case (i), the concentric
annular billiard is globally integrable, while the eccentric
annular billiard consists of a mixed system in the sense that
resonance structures, chaotic orbits, and invariant spanning
curves are either present in the phase space. In the case (ii)
we derive, for the first time in this problem, a nonlinear
discrete map that describes all the dynamics of the system.
According to the LRA conjecture [21], if in the static case of
a billiard system the dynamics is chaotic then one can ob-
serve Fermi acceleration. We have shown that the time-
dependent annular billiard does not present unlimited Fermi
acceleration for the concentric case, which corroborates with
the LRA conjecture. On the other hand, for the eccentric case
the situation is very different since the static counterpart pre-
sents a chaotic dynamics.
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For the different combinations of control parameters
which we have used in this paper, the periodic time-
dependent eccentric annular billiard presents unlimited en-
ergy growth. Particularly, we have shown that the average
velocity grows according to a power law. Even though we
did not exhaust all the dynamical scenarios of the model,
with the set of parameters that we have selected we reinforce
that the chaotic dynamics, in the static case, is a sufficient
condition to observe Fermi acceleration. We would like to
reinforce that the Fermi acceleration occurred in a scenario
where the boundaries oscillate periodically and not stochas-
tically, as reported in the majority of the works.

It is worthwhile to point out that analyzing the average
velocity in terms of the collision number is a slightly differ-
ent from analyzing it in terms of real time. This difference
occurs because for low velocities the particle may suffer suc-
cessive collisions with both boundaries when it goes into the
collision zones of both boundaries. Consequently, it is ex-
pected that, in the average, the particle spends a long elapsed
time until hitting again the external boundary. On the other

PHYSICAL REVIEW E 73, 066229 (2006)

hand, for intermediate and high velocities this problem is
attenuated because the particle escapes faster from the colli-
sion zones in such a way that the average velocities are com-
pletely analogous if one computes the real time or the colli-
sion number. In order to minimize the fluctuations originated
from the low velocities we generate a great ensemble of dif-
ferent initial conditions.

Finally, we also point out that this billiard might be con-
sidered as a transversal section of a three-dimensional toroi-
dal setup of a particle accelerator. In this sense, our work
supplies theoretical ideas and numerical results that could be
used to accelerate particles in laboratories.
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